Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Comput Biol Med ; 136: 104686, 2021 09.
Article in English | MEDLINE | ID: covidwho-1330715

ABSTRACT

The main protease of SARS-CoV-2 is one of the key targets to develop and design antiviral drugs. There is no general agreement on the use of non-steroidal anti-inflammatory drugs (NSAIDs) in COVID-19. In this study, we investigated NSAIDs as potential inhibitors for chymotrypsin-like protease (3CLpro) and the main protease of the SARS-CoV-2 to find out the best candidates, which can act as potent inhibitors against the main protease. We also predicted the effect of NSAIDs on the arachidonic pathway and evaluated the hepatotoxicity of the compounds using systems biology techniques. Molecular docking was conducted via AutoDock Vina to estimate the interactions and binding affinities between selected NSAIDs and the main protease. Molecular docking results showed the presence of 10 NSAIDs based on lower binding energy (kcal/mol) toward the 3CLpro inhibition site compared to the co-crystal native ligand Inhibitor N3 (-6.6 kcal/mol). To validate the docking results, molecular dynamic (MD) simulations on the top inhibitor, Talniflumate, were performed. To obtain differentially-expressed genes under the 27 NSAIDs perturbations, we utilized the L1000 final Z-scores from the NCBI GEO repository (GSE92742). The obtained dataset included gene expression profiling signatures for 27 NSAIDs. The hepatotoxicity of NSAIDs was studied by systems biology modeling of Disturbed Metabolic Pathways. This study highlights the new application of NSAIDs as anti-viral drugs used against COVID-19. NSAIDs may also attenuate the cytokine storm through the downregulation of inflammatory mediators in the arachidonic acid pathway.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Antiviral Agents/pharmacology , COVID-19 , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arachidonic Acid , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , Protease Inhibitors/pharmacology , SARS-CoV-2
2.
Phytother Res ; 35(6): 3262-3274, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1274778

ABSTRACT

SARS-CoV-2 has caused millions of infections and more than 700,000 deaths. Taking the urgent need to find new therapeutics for coronavirus disease 2019 (COVID-19), a dataset of plant-based natural compounds was selected for the screening of antiviral activity. The viral 3-chymotrypsin-like cysteine protease (Mpro, 3CLpro) was selected as the target. Molecular docking was performed on 2,845 phytochemicals to estimate the spatial affinity for the active sites of the enzyme. The ADMET screening was used for the pharmacological and physicochemical properties of the hit compounds. Nelfinavir and Lopinavir were used as control for binding energy comparison. The top 10 hits, based on the binding energy (Kcal/mol), were Ginkgolide M (-11.2), Mezerein (-11), Tubocurarine (-10.9), Gnidicin (-10.4), Glycobismine A (-10.4), Sciadopitysin Z-10.2), Gnididin (-9.2), Glycobismine A (-10.4), Sciadopitysin (-10.2), Gnididin (-9.20, Emetine (-8.7), Vitexin (-8.3), Calophyllolide (-8.3), and 6-(3,3-Dimethylallyl)galangin (-7.9). The binding energy for nelfinavir and lopinavir were - 9.1 and - 8.4, respectively. Interestingly, some of these natural products were previously shown to possess antiviral properties against various viruses, such as HIV, Zika, and Ebola viruses. Herein, we suggest several phytochemicals as the inhibitors of the main protease of SARS-CoV-2 that could be used in the fight against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Phytochemicals/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Peptide Hydrolases/drug effects , Phytochemicals/chemistry , Protease Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL